143 research outputs found

    Neutrino mixing, interval matrices and singular values

    Get PDF
    We study the properties of singular values of mixing matrices embedded within an experimentally determined interval matrix. We argue that any physically admissible mixing matrix needs to have the property of being a contraction. This condition constrains the interval matrix, by imposing correlations on its elements and leaving behind only physical mixings that may unveil signs of new physics in terms of extra neutrino species. We propose a description of the admissible three-dimensional mixing space as a convex hull over experimentally determined unitary mixing matrices parametrized by Euler angles which allows us to select either unitary or nonunitary mixing matrices. The unitarity-breaking cases are found through singular values and we construct unitary extensions yielding a complete theory of minimal dimensionality larger than three through the theory of unitary matrix dilations. We discuss further applications to the quark sector.Comment: Misprints correcte

    Reply to Guy et al.: Support for a bottleneck in the 2011 Escherichia coli O104:H4 outbreak in Germany

    Get PDF
    In our paper (1), we analyzed isolates from the Escherichia coli O104:H4 outbreaks in Germany and France in May to July 2011. We concluded that, although the German outbreak was larger, the German isolates represent a clade within the greater diversity of the French outbreak. We proposed several hypotheses to explain these findings, including that the lineage leading to the German outbreak went through a narrow bottleneck that purged diversity. Guy et al. (2) report the genomes of eight additional E. coli O104:H4 isolates sampled from the German outbreak. By focusing on the numbers of SNPs in their samples, they suggest that the German outbreak is more diverse than we reported and is similar to the French outbreak. In fact, Guy et al.’s data (2) strongly support our conclusion that the German outbreak represents a clade within the diversity

    The Salmonella SPI-2 effector SseJ exhibits eukaryotic activator-dependent phospholipase A and glycerophospholipid : cholesterol acyltransferase activity

    Get PDF
    Intracellular replication of Salmonella enterica serovar Typhimurium within membrane-bound compartments, called Salmonella-containing vacuoles, depends on the activities of several effector proteins translocated by the Salmonella pathogenicity island 2 (SPI-2)-encoded type III secretion system. The SPI-2 effector protein SseJ shows similarity at the amino acid level to several GDSL lipases with glycerophospholipid : cholesterol acyltransferase (GCAT) activity. In this study, we show that catalytic serine-dependent phospholipase A (PLA) and GCAT activity of recombinant SseJ is potentiated by factor(s) present in HeLa cells, RAW macrophages and Saccharomyces cerevisiae. SseJ activity was enhanced with increasing amounts of, or preincubation with, eukaryotic cell extracts. Analysis of the activating factor(s) shows that it is soluble and heat- and protease-sensitive. We conclude that PLA and GCAT activities of SseJ are potentiated by proteinaceous eukaryotic factor(s)

    The influence of long-term treadmill exercise on bone mass and articular cartilage in ovariectomized rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Loss of bone quality and deterioration of articular cartilage are commonly seen after menopause. While exercise may protect against tissue degeneration, a clear link has yet to be established. The aim of the present study is to investigate the influence of long-term treadmill exercise on changes in bone mass and articular cartilage in ovariectomized rats.</p> <p>Methods</p> <p>Sixty female Sprague-Dawley rats were randomly assigned to 4 groups: ovariectomized (OVX), ovariectomized plus treadmill exercise (OVX-RUN), treadmill exercise alone (RUN), and control (CON) groups. After 36 weeks, the following variables were compared among the 4 groups. Bone mass was evaluated by trabecular bone volume and bone mineral density (BMD). Articular cartilage in the knee joints was evaluated by histology analysis and a modified Mankin score.</p> <p>Results</p> <p>Rats in the ovariectomized groups (OVX and OVX-RUN) had significantly lower BMD and bone mass than the non-ovariectomized rats (CON and RUN), indicating that exercise did little to preserve bone mass. However, the sedentary OVX group had a significantly worse modified Mankin score (7.7 ± 1.4) than the OVX-RUN group (4.8 ± 1.0), whose scores did not differ significantly from the other 2 non-operated groups. The articular cartilage in the sedentary OVX rats was relatively thinner, hypocellular, and had more clefts than in the other 3 groups.</p> <p>Conclusion</p> <p>This study suggests that long-term exercise protects articular cartilage in OVX rats but does not retard the loss of bone mass seen in after menopause.</p

    Standard Model Theory for the FCC-ee Tera-Z stage

    Full text link
    The future 100-km circular collider FCC at CERN is planned to operate in one of its modes as an electron-positron FCC-ee machine. We give an overview comparing the theoretical status to the experimental demands of one of four foreseen FCC-ee operating stages, Z-boson resonance energy physics, called the FCC-ee Tera-Z stage for short. The FCC-ee Tera-Z will deliver the highest integrated luminosities as well as very small systematic errors for a study of the Standard Model (SM) with unprecedented precision. In fact, the FCC-ee Tera-Z will allow the study of at least one more perturbative order in quantum field theory compared to the LEP/SLC precision. The real problem is that the present precision of theoretical calculations of the various SM observables does not match that of the anticipated experimental measurements. The bottle-necks to overcoming this situation are identified. In particular, the issues of precise QED unfolding and the correct calculation of SM pseudo-observables are critically reviewed. In an Executive Summary, we specify which basic theoretical calculations are needed to meet the strong experimental expectations at the FCC-ee Tera-Z. Several methods, techniques and tools needed for higher-order multi-loop calculations are presented. By inspection of the Z-boson partial and total decay width analyses, it is argued that at the beginning of operation of the FCC-ee Tera-Z, the theory predictions may be tuned to be precise enough not to limit the physics interpretation of the measurements. This statement is based on anticipated progress in analytical and numerical calculations of multi-loop and multi-scale Feynman integrals and on the completion of two-loop electroweak radiative corrections to the SM pseudo-observables this year. However, the above statement is conditional as the theoretical issues demand a very dedicated and focused investment by the community.Comment: Published versio

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF

    HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1

    Get PDF
    We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics
    • …
    corecore